
aszogs N
4.1

$$
\begin{aligned}
& \begin{array}{l}
\left\{\begin{array}{l}
m_{2} V_{0}=m_{1} V_{1}+m_{2} \\
m_{2} V_{0}{ }^{2}=m_{1} V_{1}{ }^{2}+m
\end{array}\right. \\
V_{2}=\frac{m_{2}-m_{1}}{m_{1}+m_{2}} V_{0}
\end{array} \\
& V_{1}=\frac{2 m_{2}}{m_{1}+m_{2}} V_{0} \\
& \left\{\begin{array}{l}
\frac{l_{1}}{v_{1}}=\frac{l_{2}}{v_{2}} \\
l_{1}+l_{2}=2 \pi R
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{1}=12 \cdot \frac{4 \pi m_{2}}{3 m_{2}-m_{1}}=64,4 \\
& \varphi_{2}=12 \cdot \frac{2 \pi\left(m_{2}-m_{1}\right)}{3 m_{2}-m_{1}}=10,8
\end{aligned}
$$

длдоœs N

8

sдm 2 gsts N

hous dxezn aihzzonz buzs exianond andiha V bifitina,
 $-v \quad(i, h) j \quad 3, h j y d \partial_{\mathrm{c}} \quad e^{h m} \quad t_{1}=\frac{2 v}{1, g}=\frac{2}{3} \sigma \partial$,
 $\operatorname{shh}^{6} \lg ^{2} t_{1}^{\prime}=\frac{1}{3} \sigma 2 \quad$ un $\quad \operatorname{sigh}^{\prime} \delta y m$.
n33-30nhs $\operatorname{chg}^{2} 663$ oshgdr phm $\quad t_{2}=\frac{1}{2} 62$
 abyboyen, ta $_{2}^{\prime}=\frac{1}{2} 5 \mathrm{~d}$.

3'enczacs $(s)=\frac{1}{6}$

$$
\text { bigjer } \operatorname{binfl} \quad u=\frac{|s|}{T}=\frac{\frac{1}{6}}{2}=\frac{1}{12}
$$

 3sesesers oseres su.

$$
\begin{aligned}
& c=\frac{\varepsilon_{0} s}{d+\Delta x} \\
& \Delta c=\frac{\varepsilon_{0} s}{d+\Delta x}-\frac{\varepsilon_{0} s}{d}=\frac{\varepsilon_{0} s d-\varepsilon_{0} s d-\varepsilon_{0} s \cdot \Delta x}{d(d+\Delta x)}= \\
& =\frac{-\varepsilon_{0} s \cdot \Delta x}{d(d+\Delta x)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hoes,6 } \Delta x<4 d \quad \text { Jjb3nd } d_{p \rightarrow} \quad \text { bssbban } \\
& \Delta c=\frac{-\varepsilon_{0} s \cdot \Delta x}{d^{2}} \\
& \frac{\Delta c}{c_{0}}=-\frac{\frac{\varepsilon_{0} s \cdot \Delta x}{d^{2}}}{\frac{\varepsilon_{0} s}{d}}=-\frac{\Delta x}{d}=-0
\end{aligned}
$$

asるogs N

$$
\begin{aligned}
& U_{0}=\frac{q}{C_{0}} \\
& \Delta u=\frac{q}{C}-\frac{q}{c_{0}}=\frac{q\left(C_{0}-C\right)}{c C_{0}}=\frac{q|\Delta C|}{C C_{0}} \\
& \frac{\Delta U}{u_{0}}=\frac{\frac{q \Delta C}{c C_{0}}}{\frac{q}{C_{0}}}=\frac{|\Delta c|}{c}=\frac{\Delta x}{d}=\delta
\end{aligned}
$$

